EE Student Information

research

profs Dan Congreve and Dorsa Sadigh - Sloan Fellowship winners
February 2022
Congratulations to Dan Congreve and Dorsa Sadigh!
 
The Sloan Research Fellowship Program recognizes and rewards outstanding early-career faculty who have the potential to revolutionize their fields of study. The Sloan Research Fellowships seek to stimulate fundamental research by early-career scientists and scholars of outstanding promise.
 
"Today's Sloan Research Fellows represent the scientific leaders of tomorrow," says Adam F. Falk, president of the Alfred P. Sloan Foundation. "As formidable young scholars, they are already shaping the research agenda within their respective fields—and their trailblazing won't end here.”
 
 
Hearty congratulations to Dorsa and Dan! 
 
 

Related News

 
 

prof Dorsa Sadigh
February 2022

Professor Dorsa Sadigh joins Professor Russ Altman for a recent The Future of Everything podcast, titled "How do you build a better robot? By understanding people."

EPISODE NOTES
Whether it's autonomous vehicles or assistive technology in healthcare that can do things like help the elderly do core tasks like feeding themselves, some of the most challenging problems in the field of robotics involve how robots interact with humans, with all of our many complexities.

Drawing from fields as varied as cognitive neuroscience, psychology, and behavioral economics, Stanford computer scientist Dorsa Sadigh is exploring how to train robots to better understand humans – and how to give humans the skills to more seamlessly work with robots.

Learn more on this episode of Stanford Engineering's The Future of Everything, with host Professor Russ Altman. Listen and subscribe here.

 

Related News

prof Dan Congreve
January 2022

Dan's research is centered around nanoscale materials and devices. The Congreve Lab works with several other engineering departments, including chemical engineering, and materials science and engineering, to further their research with nanomaterials. Dan is also a member of Stanford's Q-FARM, Quantum Fundamentals, Architectures and Machines initiative. 

Dan is a featured faculty on EE's "Meet our Faculty!" YouTube playlist. During the next few weeks, more videos about Dan and his research will post. Subscribe to receive notifications about new videos. Watch videos: Meet Assistant Professor Dan Congreve and learn about nanomaterial research in his lab.

 

About Asst. Professor Dan Congreve

  • Research interests: Controlling light and energy at the nanoscale to solve challenging problems.
  • Favorite food: Sushi, coffee.
  • Favorite thing about the Bay Area: So many great outdoor things to do (once pandemics and/or fires subside).
  • Favorite thing about Stanford (so far): The amazing people.
  • Piece of advice for new Graduate Students: Surround yourself with people who inspire you to reach a new level and support you in getting there. And always remember: You belong at Stanford. 

 

 

prof Krishna Saraswat
January 2022

Co-lead authors Koosha Nassiri Nazif and Alwin Daus, both EE postdoctoral scholars, describe their tungsten diselenide solar cells that boast a power-per-weight ratio on par with established thin-film solar cell technologies in their recently published paper. Their prototype achieves 5.1 percent power conversion efficiency, and the team projects they could practically reach 27 percent efficiency upon optical and electrical optimizations. That figure would be on par with the best solar panels on the market today, silicon included.

Their prototype realized a 100-times greater power-to-weight ratio of any transition metal dichalcogenides (TMDs) yet developed. That ratio is important for mobile applications, like drones, electric vehicles and the ability to charge expeditionary equipment on the move. When looking at the specific power – a measure of electrical power output per unit weight of the solar cell – the prototype produced 4.4 watts per gram, a figure competitive with other current-day thin-film solar cells, including other experimental prototypes.

"We think we can increase this crucial ratio another ten times through optimization," states Krishna, adding that they estimate the practical limit of their TMD cells to be a remarkable 46 watts per gram.


Pictured below are Professor Krishna Saraswat (left) and Dr. Koosha Nassiri Nazif (right), and a photograph of WSe2 solar cells on a flexible polyimide substrate held up with a pair of tweezers. Photo credit: Dr. Koosha Nassiri Nazif.

Prof. Krishna Saraswat and Dr. Koosha Nassiri Nazif

"Imagine an autonomous drone that powers itself with a solar array atop its wing that is 15 times thinner than a piece of paper," said Koosha Nassiri Nazif, a doctoral scholar in EE. "That is the promise of TMDs."

This is collaborative work between the research groups of Professor Krishna Saraswat and Professor Eric Pop.
Additional authors include

  • Department of Electrical Engineering: Koosha Nassiri Nazif, Alwin Daus, Sam Vaziri, Aravindh Kumar, Frederick Nitta, Siavash Kananian, Raisul Islam, Prof. Ada S. Y. Poon, Prof. Eric Pop & Prof. Krishna C. Saraswat
  • Geballe Laboratory for Advanced Materials (GLAM): Jiho Hong, Nayeun Lee & Prof. Mark L. Brongersma
  • Department of Materials Science and Engineering: Jiho Hong, Nayeun Lee, Michelle E. Chen, Prof. Mark L. Brongersma, Prof. Eric Pop & Prof. Krishna C. Saraswat
  • Department of Electrical and Computer Engineering, Sungkyunkwan University: Kwan-Ho Kim & Jin-Hong Park
  • Department of Electrical and Systems Engineering, University of Pennsylvania: Kwan-Ho Kim
  • SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University: Jin-Hong Park
  • Department of Applied Physics: Prof. Mark L. Brongersma

Related Sources

prof Jelena Vučković
January 2022

Excerpted from "Stanford engineers and physicists study quantum characteristics of 'combs' of light"

Professor & Chair Jelena Vučković states, "Many groups have demonstrated on-chip frequency combs in a variety of materials, including recently in silicon carbide by our team. However, until now, the quantum optical properties of frequency combs have been elusive. We wanted to leverage the quantum optics background of our group to study the quantum properties of the soliton microcomb."


While soliton microcombs have been made in other labs, the Stanford researchers are among the first to investigate the system's quantum optical properties, using a process that they outline in a paper published Dec. 16 in Nature Photonics. When created in pairs, microcomb solitons are thought to exhibit entanglement – a relationship between particles that allows them to influence each other even at incredible distances, which underpins our understanding of quantum physics and is the basis of all proposed quantum technologies. Most of the "classical" light we encounter on a daily basis does not exhibit entanglement.

"This is one of the first demonstrations that this miniaturized frequency comb can generate interesting quantum light – non-classical light – on a chip," said Kiyoul Yang, a research scientist in Vučković's Nanoscale and Quantum Photonics Lab and co-author of the paper. "That can open a new pathway toward broader explorations of quantum light using the frequency comb and photonic integrated circuits for large-scale experiments."

Proving the utility of their tool, the researchers also provided convincing evidence of quantum entanglement within the soliton microcomb, which has been theorized and assumed but has yet to be proven by any existing studies.

"I would really like to see solitons become useful for quantum computing because it's a highly studied system," said Melissa Guidry, a graduate student in the Nanoscale and Quantum Photonics Lab and co-author of the paper. "We have a lot of technology at this point for generating solitons on chips at low power, so it would be exciting to be able to take that and show that you have entanglement."

 

Read full article: Stanford News, "Stanford engineers and physicists study quantum characteristics of 'combs' of light

 

Related News

Professor Shanhui Fan
November 2021

Today's quantum computers are complicated to build, difficult to scale up, and require temperatures colder than interstellar space to operate. These challenges have led researchers to explore the possibility of building quantum computers that work using photons — particles of light. Photons can easily carry information from one place to another, and photonic quantum computers can operate at room temperature, so this approach is promising. However, although people have successfully created individual quantum "logic gates" for photons, it's challenging to construct large numbers of gates and connect them in a reliable fashion to perform complex calculations.

Professor Shanhui Fan and Ben Bartlett (PhD candidate, Applied Physics) have proposed a design that uses a laser to manipulate a single atom that, in turn, can modify the state of the photons via a phenomenon called "quantum teleportation." The atom can be reset and reused for many quantum gates, eliminating the need to build multiple distinct physical gates, vastly reducing the complexity of building a quantum computer. Their paper on the proposed design has been published in Optica.

The scientists' design consists of two main sections: a storage ring and a scattering unit. The storage ring, which functions similarly to memory in a regular computer, is a fiber optic loop holding multiple photons that travel around the ring. Analogous to bits that store information in a classical computer, in this system, each photon represents a quantum bit, or "qubit." The photon's direction of travel around the storage ring determines the value of the qubit, which like a bit, can be 0 or 1. Additionally, because photons can simultaneously exist in two states at once, an individual photon can flow in both directions at once, which represents a value that is a combination of 0 and 1 at the same time.

The researchers can manipulate a photon by directing it from the storage ring into the scattering unit, where it travels to a cavity containing a single atom. The photon then interacts with the atom, causing the two to become "entangled," a quantum phenomenon whereby two particles can influence one another even across great distances. Then, the photon returns to the storage ring, and a laser alters the state of the atom. Because the atom and the photon are entangled, manipulating the atom also influences the state of its paired photon.

Excerpted from: "Stanford engineers propose a simpler design for quantum computers"

 

Related News

prof Chelsea Finn, image source: ai.stanford.edu/~cbfinn/
November 2021

Professor Chelsea Finn joins Professor Russ Altman for a recent The Future of Everything podcast, titled "How to make artificial intelligence more meta."

EPISODE NOTES
In one of computer science's more meta moments, professor Chelsea Finn created an AI algorithm to evaluate the coding projects of her students. The AI model reads and analyzes code, spots flaws and gives feedback to the students. Computers learning about learning—it's so meta that Chelsea calls it "meta learning."

Chelsea says the field should forgo training AI for highly specific tasks in favor of training it to look at a diversity of problems to divine the common structure among those problems. The result is AI able to see a problem it has not encountered before and call upon all that previous experience to solve it. This new-look AI can adapt to new courses, often enrolling thousands of students at a time, where individual instructor feedback would be prohibitive.

Emboldened by results in class, she is now applying her breadth-over-specificity approach to her other area of focus, robotics. Chelsea hopes to develop new-age robots that can adapt to unfamiliar surroundings and can do many things well, instead of a few, as she tells host Russ Altman and listeners to this episode of Stanford Engineering's The Future of Everything podcast. Listen and subscribe here

 

 

Related News

prof Gordon Wetzstein
November 2021

Professor Gordon Wetzstein and his colleagues are working to come up with solutions to bridge a gap between simulation and reality while creating displays that are more visually appealing and easier on the eyes.

The research published in Science Advances details a technique for reducing a speckling distortion often seen in regular laser-based holographic displays, while the SIGGRAPH Asia paper proposes a technique to more realistically represent the physics that would apply to the 3D scene if it existed in the real world.

 

"Artificial intelligence has revolutionized pretty much all aspects of engineering and beyond. But in this specific area of holographic displays or computer-generated holography, people have only just started to explore AI techniques," states Gordon.

 

Excerpted from "Stanford researchers are using artificial intelligence to create better virtual reality experiences," November 12, 2021.

 

Related

prof Shanhui Fan
November 2021
Professor Shanhui Fan and colleagues have modified silk to reflect 95% of sunlight, helping to keep the wearer cooler than other fabrics. 

They were able to engineer the silk fabric by embedding the fibers with aluminium oxide nanoparticles that reflect the ultraviolet wavelengths of sunlight.

The researchers found that the fabric stayed 3.5°C cooler than the surrounding air because of its ability to reflect most sunlight and radiate heat. It is the first fabric to be developed that stays colder than the surrounding air when in sunlight.

Shanhui says the fabric is mainly designed to keep people cool when they are outdoors and exposed to sun, rather than in indoor settings like homes and office buildings.
 

Scientists have been searching for passive ways of cooling us that don’t require electricity in order to help reduce demands on energy. Approximately 15% of global electricity goes towards keeping us cool. 
 


Journal reference: Nature Nanotechnology, DOI: 10.1038/s41565-021-00987-0
 
Excerpted from

prof Dan Boneh
November 2021

"This is a fascinating area of research with deep scientific questions. Once you get into the details you quickly realize that this area will generate many PhD theses across all of computer science and beyond."

- Professor Dan Boneh

 

Professor Dan Boneh heads the applied cryptography group, co-directs both the computer security lab and the Stanford Center for Blockchain Research (CBR).

Founded in 2018, CBR's primary mission is to support the thriving blockchain ecosystem by developing new technologies needed to advance the field by bringing together engineering, law, and economics faculty, as well as post-docs, students, and visitors, to work on technical challenges in the field.

CBR has built an extensive education and outreach program, including on-campus courses, student groups (Blockchain Club and Blockchain Collective), MOOCs, workshops, and conferences for the general blockchain community.

 

RELATED AT STANFORD

 

RELATED NEWS

Pages

Subscribe to RSS - research